
www.manaraa.com

An Efficient Task Scheduling Algorithm for Private

Cloud Computing based on User priority

خوارزمية فعاله لجدولة المهام في الحوسبـة السحابيـة الخاصـة

 مبنيـة علـى أولوية المستخدم

By

Mohammad Al-Zyadneh

Supervisor

Prof. Ismail Ababneh

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master’s Degree of Science in Computer

Science

Deanship of Graduate Studies

Al al-Bayt University

May, 2019

www.manaraa.com

ii

Committee Decision

This Thesis (An Efficient Task Scheduling Algorithm for Private Cloud

Computing based on User priority was successfully defended and approved

on 00/05/2019.

Examination Committee Signature

Prof. Ismail Ababneh (Supervisor)

……..……………………

Prof. Saad Bani-Mohammad

………..…………………

Prof. Omar Shatnawi

………..…………………

Dr. Wail Elias Mardini

………..…………………

www.manaraa.com

iii

Dedication

This thesis is dedicated to

My parents along with all my family members

For their love, endless support and encouragement.

www.manaraa.com

iv

Acknowledgments

First of all, I would like to express my deep gratitude to my supervisor, Dr. Ismail Ababneh

for his inspiring guidance, valuable advice, and constant encouragement throughout the

progress of this work. His suggestion and his frequent questions motivated this thesis and he

never failed to provide his help at all stages of this thesis.

My great thanks are for my parents, my brother, and my sisters, without their

encouragements and support I could not do anything.

Appreciate all of my friends who encouraged me during my master study; they truly helped

me a lot.

www.manaraa.com

v

tsTable of Conten

Committee Decision .. ii

Dedication ... iii

Acknowledgments ...iv

Table of Contents .. v

LIST OF FIGURES ... vii

LIST OF TABLES ... vii

Abstract ...ix

Chapter 1 Introduction ... 1

1.1 Overview .. 1

1.2 Benefits and Drawbacks of the Private Cloud .. 3

1.3 Service Models: ... 5

1.4 Task scheduling ... 6

1.4.1 Shortest-Job-First (SJF) .. 6

.1.4.2Round Robin RR .. 7

1.4.3 First-Come-First-Serve (FCFS) ... 7

1.4.4 Multilevel queue scheduling (MQ) ... 7

1.6 Problem Statement .. 8

1.7 Research Objectives .. 8

1.8 Research Questions... 9

1.9 Scope of Research .. 9

1.10 Research Significance ... 9

1.11 Thesis Outline .. 10

Chapter 2 Literature Review .. 11

2.1 Overview .. 11

2.2 Traditional Scheduling Algorithms in Cloud .. 11

2.3 Task scheduling in Private Cloud ... 11

2.3.1 Priority based Job Scheduling algorithm in Cloud ... 12

2.3.2 Consistency Based Task Scheduling in Cloud .. 13

2.3.3 Reduced Makespan Based Task Scheduling .. 13

2.3.4 Cost Based Task Scheduling .. 13

www.manaraa.com

vi

2.4 Previous work .. 14

2.5 Chapter summary .. 17

Chapter Three Methodology .. 18

3.1 Overview .. 18

3.2 The proposed algorithm (HPJF) ... 18

3.2.1 Assign tasks into VM ... 19

3.2.2 Tasks classification into queues .. 21

3.2.3 Sort tasks within each queue .. 22

3.2.4 Send tasks to VM .. 22

3.3 An example for the proposed algorithm ... 24

Chapter Four Simulation results .. 31

4.1 Overview .. 31

4.2 Introduction to simulation used .. 31

4. 3 Performance Evaluation Factors and Criteria for the HPJF Algorithm 32

4.3 Experimental Results and Discussion .. 33

4.3.1 Applying Threshold to each user level queue ... 33

4.3.2 . The Evaluation results for each user priority level: ... 34

4.3.3 The Evaluation results when the tasks number is increased: 35

4.3.4. The Evaluation results when the number of user levels is increased: 37

4.3.5. The Evaluation results when the behavior of HPJF is changed: 38

4.3.6. The Evaluation results when the order of parameters is changed: 40

4.3.4.The evaluation results for each scheduling algorithm: 41

4.4 Summary .. 43

Chapter Five Conclusion and Future Work ... 44

5.1 Conclusion ... 44

5.2 Directions for the Future Works: .. 44

Arabic Summary .. 45

References .. 46

www.manaraa.com

vii

LIST OF FIGURES
Figure 1.1: Cloud infrastructures………………………………………………………..…….…..…10

Figure 1.2: cloud computing archicture ……………………………………….…………….………13

Figure 1.3: A multilevel queue………………….……….…………………………………......……..15

Figure 3.1: The overall design of the proposed algorithm……………………………………….…16

Figure 3.2: Flowchart for the proposed algorithm……………………………………………….…36

Figure 4.1: Average Waiting Time against user level ……………………………….……..………40

Figure 4.2: Average Turnaround Time against user level ……………………………..…………..41

Figure 4.3: Average Waiting Time against tasks number …………………………………..…..…42

Figure 4.4: Average Turnaround Time against tasks number ……………………………….....…42

Figure 4.5: Average Waiting Time against user level ……………………….………………....…..43

Figure 4.6: Average Turnaround Time against user level ………………….…………………………………..….44

Figure 4.7: Average Waiting Time against the Number of tasks taken from each queue………..…45

Figure 4.8: Average Turnaround Time against the Number of tasks taken from each queue….... 45

Figure 4.9: Average Turnaround Time against the experiments in Table 4.2……………........…..... 47

Figure 4.10: Average Turnaround Time against the experiments in Table 4.2……………..………….. 47

Figure 4.11: Average Waiting Time for each scheduling Algorithm …..48

Figure 4.12: Average Turnaround Time for each scheduling Algorithm ….......................................49

LIST OF TABLES
Table 3.1: Incoming tasks by different priority level of users…………………………..……....31

Table 3.2 Tasks classification into high-level queue……………………………………...….…..33

Table 3.3 Tasks classification into middle level queue……………………………………….….33

Table 3.4 Tasks classification into low-level queue……………………………………………...33

Table 3.5: Rearrange tasks in high-level queue based on priority weight value……………....34

Table 3.6: Rearrange tasks in middle-level queue based on priority weight value…………....34

Table 3.7: Rearrange tasks in low-level queue based on priority weight value……...……….34

Table 3.8: Tasks classification after applying HPJF technique………………….…….....…....35

Table 4.1: the specifications for both VM and Cloudlet....................................….......................38

Table 4.2: set of the experiments uses different values of the coefficients ratio…...……..46

www.manaraa.com

viii

Table 4.3: AWT and ATT for each scheduling Algorithm...................................….......................48

www.manaraa.com

ix

An Efficient Task Scheduling algorithm for Private Cloud

Computing based on User priority

By

Mohammad Al-Zyadneh

Supervisor

Prof. Ismail Ababneh

Abstract
Nowadays, Cloud computing has gained much attention in many applications. The user

can use cloud resources on demand on a pay-as-you-go from anywhere and at any time.

The cloud computing environment is suitable for serving a large number of tasks using

the available computing resources. The scheduling algorithm is an important factor in

cloud computing environment as it manages the order of execution of the tasks with the

goal of improving the throughput of the cloud computing resources. In private cloud

computing, user priority is one of the major user needs inside the organization that should

be taken into account, where priority is given to user tasks that should not be late.

However, most researchers have not attempted to solve the starvation problem that can

occur in priority-based systems.

In this thesis, an efficient task scheduling method named High-Priority-Job-First (HPJF)

that is based on user priority is proposed for private cloud computing systems. The

suggested method assigns tasks to cloud resources in an efficient manner based on user

type, execution cost, task execution time, and load on the virtual machine. In addition, a

multi-queue technique is used to overcome the problem of starvation that occurs in

priority-based systems. HPJF is Implemented using a simulation called CloudSim. HPJF

was compared with four scheduling algorithms First Come First Serve (FCFS), Round

Robin (RR), Short Job First (SJF) and Best Level Job First (BLJF). The simulation

results show that HPJF has better performance in terms of both waiting time and

turnaround time compared with the other tasks scheduling algorithms.

www.manaraa.com

1

Chapter 1

Introduction

1.1 Overview
Recently, cloud computing has received the attention of organizations and users due to

the high performance computing services and facilities that it provides to end users.

Cloud computing is defined by the National Institute of Standards and Technology as “A

model for enabling convenient, on-demand network access to a shared pool of

configurable computing resources such as networks, servers, storage, applications, and

services that can be rapidly provisioned and released with minimal management effort or

service provider interaction” (Wyld, 2009). Cloud computing is also defined in terms of

the two words cloud and computing. The term “Cloud” refers to the applications that

provide services to end users and the hardware and system software that are responsible

for providing the services. While the term “Computing” refers to carrying out user tasks

with higher resources availability and lower cost (Katyal & Mishra, 2014).

There are three main stakeholders of clouds represented by end users, cloud providers

and cloud developers. The customers that use the various services

(infrastructure/software/platform) of the cloud are known as the end users. The users

request the various services after adhering to the Service Level Agreement (Allan et al.)

by the Cloud Provider on a pay-per-use model (Aslanzadeh, 2016). The user’s request

(known as task) is a basic unit of user request it denotes an independent unit of

computation, (naturally a program and possibly associated data) to perform on a machine.

Each task may have a certain priority level, an earliest possible starting time and a due

date (Baeza-Yates & Ribeiro-Neto, 1999). Whereas, a machine, also known as resource, is

a basic unit of scheduling and each machine has its own elements such as CPU, memory,

system model, operating system, software, etc. The cloud developer is responsible for

meeting the requirements of both the cloud user and the cloud provider. Provider offers

www.manaraa.com

2

four different infrastructures and manages their resources to be provided to the end users

as illustrated in Figure 1.1 (Katyal & Mishra, 2014).

Figure 1.1: Cloud infrastructures (Katyal & Mishra, 2014)

1. Public cloud: The cloud infrastructure in this type of cloud is available for public

usage. It may be owned, managed, and operated by a business, government, academic or

organization, or any combination of them.

2. Community cloud: This type of cloud can be used exclusively by a specific

organization, community and also the consumers who have sharing objectives (e.g.,

security mission). The cloud also can be owned, managed, and operated by one or

more of the organizations in the community, a third party, or any combination

of them.

3. Private cloud: This type of cloud is the main focus of this thesis where it refers to

cloud computing on private networks in which cloud can be used exclusively by a single

organization, including several customers (e.g., business, company…). It can be owned,

operated, and managed by the organization itself, a third party, or a combination of both

of them.

4. Hybrid cloud: The cloud infrastructure in this type of cloud is a combination of two

or more cloud infrastructures (private, community, or public) (S. Kaisler, W. H.

Money & S. J. Cohen, 2012). In the hybrid cloud, a standardized or proprietary

www.manaraa.com

3

5. technology is used to allow organization can manage some resources internally and

externally.

1.2 Benefits and Drawbacks of the Private Cloud

There are many features and benefits for using private cloud computing such as high

security, privacy, more control, cost and energy efficiency, improved reliability and cloud

bursting (Ghazizadeh, 2012) as follow:

1. Higher Security and Privacy

Private clouds use techniques such as distinct pools of resources with the restrictive

access made from the application of firewalls, dedicated leased lines and internal hosting

for protecting the system from hackers Also, typically no user can see all information in

such system.

2. Better control

A private cloud is only accessible by a single organization, that organization will have the

ability to configure and manage the implementation and the infrastructure; servers,

firewalls, networks and communication, middleware, Also, it has control over the

security implementation.

3. Improved reliability

In a private cloud, resources (servers, networks etc.) are hosted internally, and the

creation of virtualized operating environments reduces the individual failures in the

resources. Therefore, private clouds make resources more resilient across the physical

infrastructure.

4. Cloud bursting

One of the features for private cloud is cloud bursting. The providers may offer the

opportunity to employ cloud bursting when the demand for computing capacity spikes.

This service allows an application to run in a private cloud and to burst into a public

www.manaraa.com

4

cloud to free up more space in Private cloud for the sensitive functions that require it.

5. Cost and energy efficiency

Implementing a private cloud model can improve the allocation of resources within an

organization by ensuring the availability of resources to individual departments/business

functions and responding to their demand directly and easily. They make more efficient

use of the computing resource than traditional LANs, this allows reducing energy

consumption.

 Drawbacks of Private cloud

There are mainly three drawbacks of private clouds (Zhang, Cheng, & Boutaba, 2010) as

follow:

1. Higher cost

The major drawback of the private cloud is its higher cost compared to the public cloud;

the cost of purchasing equipment, software and staffing often results in higher costs to an

organization having their own private cloud.

2. Scalability

The private cloud is not easy to scale compared to the public cloud, because adding

physical hardware require security restrictions, and may require the organization to rent

out more space or even move locations to have enough space to allocate all the required

hardware.

3. More maintenance

In private clouds, organizations have to take care of all hardware and underlying

networks; they require daily and weekly maintenance If not properly maintained, the

organization runs the risk of losing data.

www.manaraa.com

5

1.3 Service Models:
The services in cloud computing are categorized into three major approaches:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS), IaaS provides infrastructure service in virtual platform for the user to

achieve various virtual kinds of work such as processing, storage, and server functions,

in which the users purchase the services similar to electricity based usage, PaaS provides

platform service for users to allow them to develop the applications and to check the

output quickly and effectively, SaaS provides the software to the user, application can be

run directly without the need to install run applications on a personal computers (Mell &

Grance, 2011).

The cloud providers have huge computing resources in their datacenters (DCs), which

can be rented to the end users per-usage. In contrast, users run the applications on the

cloud pay for the provider the required cost according to applications loads and the

resources usage. The scenario starts from the users to the Service Broker. The Service

Broker selects a suitable datacenter according to the service broker policy (Guo, Zhao,

Shen, & Jiang, 2012). DCs consist of a number of physical hosts that manages a number

of Virtual that manage (VMs) as portrayed in Figure1.2 (Mell & Grance, 2010)

Figure 1.2: Cloud computing architecture (Mell & Grance, 2010).

www.manaraa.com

6

Several techniques are used to serve all user requests without long waiting time. Task

scheduling is one of the techniques that is used to improve the performance of cloud

computing system. In the next section, task scheduling is discussed.

1.4 Task scheduling
Task scheduling is defined as the process that specifies the order of selecting a job

located within the waiting queue for processing (Babbar and Krueger, 1994; Ababneh

and Bani-Mohammad 2011). Task scheduling is used in cloud computing to improve the

performance of the system (Khajemohammadi, Fanian, & Gulliver, 2013). Task

scheduling can be done in two modes; space shared and time-shared. In space-shared

mode, the resources are not preempted until the completion of the tasks execution. While

in the time-shared mode, resources are preempted until all the tasks complete their

execution. There are two types of tasks scheduling based on scheduling decisions; the

static and the dynamic Scheduling. In static scheduling, the scheduling decisions are

based on the parameters fixed before submitting the tasks for execution (Li, 2012). On

the other hand, the dynamic scheduling decisions are based on dynamic parameters that

may change during the execution of the tasks (Hu, Gu, Sun, & Zhao, 2010).

There are two types of tasks that can be scheduled; the independent tasks where each task

is independent form the other tasks and scheduled without considering their

interdependence. Dependent tasks that are known as workflow tasks, where there are

dependencies between tasks that should be taken into account when assigning the tasks to

the available resources (Aslanzadeh, 2016).

Different scheduling algorithms are used to manage the execution of the user’s tasks

which have different properties such as Shortest-Job-First (SJF), Round Robin(RR),

First-Come-First-Serve (FCFS) and Multilevel queue scheduling (MQ) as follow:

1.4.1 Shortest-Job-First (SJF)

Shortest job first (SJF) is a scheduling algorithm that selects the task with the smallest

execution time from the waiting queue to be executed next. Shortest Job first scheduling

www.manaraa.com

7

algorithm is easy to implement but it may suffer from starvation problem. However, this

problem can be resolved by the aging concept (Ru & Keung, 2013).

1.4.2. Round Robin (𝐑𝐑)

Round Robin (RR) is simple, fair and widely used, where the tasks in a queue are served

in circular order and each task equal chance (time slice) to get a resource. Round Robin

scheduling is easy to implement, and starvation-free. (Sotomayor, Montero, Llorente, &

Foster, 2009).

1.4.3 First-Come-First-Serve (FCFS)
First-Come-First-Serve (FCFS) executes tasks in the order of their arrival, where new

tasks are placed at the end of the waiting queue and wait for the previous tasks to be

executed. The First-Come-First-Serve scheduling algorithm is easy to

implement and starvation-free (Agarwal & Jain, 2014).

1.4.4 Multilevel queue scheduling (MQ)

Multilevel queue scheduling (MQ), which is the main focus of this thesis, classifies tasks

into different priority groups (Agarwal & Jain, 2014). For example, a multilevel queue

that has three queues is shown in Figure 1.3.

Figure 1.3: A multilevel queue

Each queue has its priority compared with the other queues as can be shown in figure 1.3.

https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Resource_starvation

www.manaraa.com

8

MQ has high performance as compared to the other scheduling algorithms for the cloud

environment (Kumaresh et al, 2012;Agarwal & Jain, 2014).

1.6 Problem Statement
 One of the most important problems in cloud computing is tasks scheduling. In

scheduling process, some tasks may execute before others which can increase the average

waiting and turnaround time relatively for low priority tasks when the priority are given

for high user to perform their tasks. The classic scheduling algorithms such as SJF, RR

and FCFS don’t take any consideration for the user’s needs. Therefore, the scheduling

process needs more scheduling policies to improve the performance of the system.

In addition, the starvation problem is one of the major challenges that priority-based task

scheduling suffers from. In private cloud computing, lower priority tasks can starve

because execution priority is given to the higher priority tasks. A task may wait for a very

long time to be executed. In this research, an efficient scheduling method is proposed to

solve the starvation problem of user tasks in the cloud environment. The suggested

method uses a multi-queue technique to distinguish the priority of the user tasks based on

the user type, task execution cost, task execution time and load on the VM. HPJF uses the

multi queue technique to solve the starvation problem that may face the lower priority

because execution priority is given to the higher priority tasks.

1.7 Research Objectives
 The main objective of the proposed method is to solve the scheduling problem in private

cloud computing for the organizations that are scheduling their tasks based on user

priority. The following objectives have been delineated:

1. Reduce the overall waiting time for scheduling tasks in cloud environment.

2. Distributing user tasks on the hierarchical queue system and arrange the tasks within

each queue according to their task attributes.

www.manaraa.com

9

3. Give low priority tasks a chance to be scheduled with the high level tasks to avoid

starvation problem.

1.8 Research Questions
In order to reach the objectives stated previously, the following questions have to be

answered in this thesis:

1. Can an efficient scheduling method for scheduling problem reduce waiting time when

the lower level user’s tasks are increased in the organization?

2. Can an efficient scheduling method distribute users’ tasks on the hierarchy queue

system and arrange the tasks within each queue according to their tasks attributes?

3. Can an efficient scheduling method use multi queue technique to avoid starvation

problem?

1.9 Scope of Research
The scope of this study concerns primarily on tasks scheduling problem in the cloud

environment. The proposed method used two techniques; sort tasks based on the task

weight to improve the quality of service (QoS) and the multi queue technique is used to

solve the starvation problem that may face the low priority tasks when the execution

priority is given to the higher priority tasks. In this research, The tasks weight is

represented by four attributes; the user priority, the execution time, the execution cost and

the system load the cloud system load and the user priority level. The execution time that

represents the time needed to execute the task on the resource. The execution cost

denotes the price required to use the resource. The VM load represents the load in the

private cloud resources. The user priority level declares the user position in the

organization.

1.10 Research Significance
The main significant of this research is the using of an efficient method for solving the

scheduling problem. The proposed method is expected to give better results in

distributing the tasks over the VM, because it combines the advantages of the two

powerful techniques; the Multi-queue technique and the priority-based scheduling

www.manaraa.com

10

algorithm. The advantages of the Multi-queue technique are represented by given the

priority to some tasks than the other and to overcome the problem of starvation. Whereas,

the advantages of the priority-based scheduling algorithm is represented by improve

quality of service (QoS) for all users where each user is given an appropriate QoS based

on a four parameters values. The performance of the suggested method will be compared

to other methods to prove its effectiveness in solving the tasks scheduling problem in the

cloud environment.

1.11 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides earlier studies that are

related to our work. Chapter 3 discusses in detail the methodology and the

implementation stages of the proposed method to solve the problem of tasks scheduling

based on the tasks attributes. Chapter 4 discusses in detail the results of our experiments,

and compare the result of the proposed method with other existing algorithms.

Chapter 5 concludes the thesis and produces the future work.

www.manaraa.com

11

Chapter 2

Literature Review

2.1 Overview
Task scheduling problems are considered as one of the main challenges in the cloud

environment. Many researches tried to solve the task-scheduling problem for the users’

tasks. This chapter details some of the related work and a literature review to the problem

being studies in this thesis.

2.2 Traditional Scheduling Algorithms in Cloud
There are many algorithms used to solve the task-scheduling problem like

FCFS(Anuradha & Sumathi, 2014) . FCFS is a simple algorithm where task that arrives

first will be scheduled first and resources are allocated to that task, as it need.

On the other hand, (Jia & Keung, 2013) proposed algorithm used SJF algorithm to be

integrated with task grouping, priority-aware and SJF (shortest-job-first) to reduce the

waiting time and make span, as well as to improve resource utilization.

Moreover, (Awan & Shah, 2015) proposed algorithm based on Round Robin method

where the task is assigned to the VM. In this approach, a task is taken from the job pool.

Then the select task is assigned to the available VM in round robin manner. This method

has very less complexity with no overhead.

In general, Most of the traditional algorithms of scheduling in cloud computing such as

FCFS, Round Robin, Min–Min and Max–Min scheduling algorithms do not take any

consideration for the user needs and where the task is assigned to any available resource

as soon as it arrives. Therefore, many researches are focused on optimize the task

scheduling to reduce these problems.

2.3 Task scheduling in Private Cloud
Task scheduling in private cloud environment is quite complicated due to limited

resources compared to the public cloud. In addition, the computational complexity and

www.manaraa.com

12

the computing capacity of the processing elements are taken into account when

scheduling the task in the private cloud environment. (Kumar & Verma, 2012) proposed

an algorithm for private cloud environment that is based on the computational complexity

and the computing capacity of the processing elements. The proposed algorithm using

these parameters to build the algorithm that reduce the turnaround time and improve

resource utilization.

In other researches, the researchers classified tasks based on the user priority based on

their importance in a private cloud environment to give each user an appropriate priority

to perform his tasks. (The study in Singh et al, 2014) proposed algorithm in a private

cloud computing which has high throughput. The proposed algorithm classified tasks into

two groups of users to reduce the average waiting time. The proposed algorithm also

using bounded waiting for each group to overcome the problem of starvation.

2.3.1 Priority based Job Scheduling algorithm in Cloud
Priority refers to the fact of being regarded or treated with a task as more important than

others. (Ghanbari & Othman, 2012) proposed an algorithm based on priority called

(PJSC) by using mathematical demography. The proposed algorithm depends on multi-

criteria such decision-making and mathematical model that known as Analytical

Hierarchy Process (AHP). The proposed algorithm consists of three level priorities that

include; scheduling level (objective level), resources level (attribute level) and job level

(alternative level). The priority of each task is calculated and compared with other tasks

separately. The suggested algorithm that provides priority for tasks that serve the

decision-making, scheduling the tasks with minimum makespan and high throughput.

However, the proposed algorithm is Inconsistency so it does not give optimal finish time.

Moreover, (Saxena, Chauhan, & Kait, 2016) proposed priority based task scheduling

algorithm where Tasks are given priority based on the size and VM are given priority

based on Million Instructions per Second (MIPS). Then FCFS scheduling algorithm is

used to allocate the tasks to the VMs.

www.manaraa.com

13

2.3.2 Consistency Based Task Scheduling in Cloud
Consistency refers to agreement or harmony of parts or features to one another or a

whole in Task Scheduling process in Cloud. (Ergu, Kou, Peng, Shi, & Shi, 2013)

proposed algorithm that is based on analytical hierarchy process (AHP) focuses to

improve consistency of comparison matrixes. Therefore, after the priority of each task is

calculated, an appropriate cloud storage and cloud resources are assigned to the

reciprocal tasks according to tasks weights. Although, the algorithm provides better

approach to handle inconsistency, the approach still suffers from Over sighted finish time

and complexity of algorithm issue.

2.3.3 Reduced Makespan Based Task Scheduling
Makespan is the whole execution time of the application tasks. (ROUHI & NEJAD,

2015) proposed algorithm called CSO-GA to reduce the Makespan for all the running

tasks. The research presents a new meta heuristic scheduling technique using a

combination of Cat Swarm Optimization (CSO) and Genetic Algorithm (GA). The

proposed strategy reduce the Makespan compared to other techniques.

Furthermore,(Arabnejad & Barbosa, 2014) presented a Heterogeneous Budget

Constrained Scheduling (HBCS) algorithm. The algorithm aims to reduce the

execution time and cost. The HBCS algorithm reduces the makespan by 30 % and the

cost within the user’s specified budget. Furthermore, the HBCS algorithm reduce the time

complexity compared to other budget-constrained algorithms. In addition, (Chitra,

Madhusudhanan, Sakthidharan, & Saravanan, 2014) used the JPSO algorithm to reduce

the makespan. The JPSO algorithm overcome the problem of stocking in the local

minima solution. The modified PSO algorithm make a jump in the 𝑔𝑏𝑒𝑠𝑡 value to avoid

the poor convergence of the 𝑔𝑏𝑒𝑠𝑡 values. The results show that the proposed algorithm

is more effective than the GA algorithm by 3.8% with a small number of tasks. However,

the GA algorithm shows better result with a large number of tasks.

2.3.4 Cost Based Task Scheduling
Cost is the total cost of the application tasks executing over the VMs. (Selvarani &

Sadhasivam, 2010) improves the traditional cost-based scheduling algorithm for making

www.manaraa.com

14

appropriate mapping of tasks to resources. This algorithm groups the tasks according to

the processing capabilities of available resources. The suggested algorithm enhanced the

communication between tasks within each group and helped to provide the required

resources for all tasks within each group at the same time. (Saxena et al., 2016) classifies

the tasks into three categories according to the deadline and the cost constraints for each

task and assign them to three levels of queues (High, Medium and Low). The approach is

based on greedy resource (VM) allocation for selecting the resources in which the

priority is given for the VM with minimum turnaround time for each individual task.

Moreover, (Wu, Liu, Ni, & Gu, 2010) suggest Revised Discrete Particle Swarm

Optimization (RDPSO) algorithm. The proposed algorithm is used to schedule the tasks

over the different available resources. The Experiment is take place with a set of tasks

with various data communication and computation costs based on the price model.

The result showed that the proposed RDPSO algorithm could save cost and provide better

makespan compared with the standard PSO and BRS (Best Resource Selection)

algorithms. The proposed algorithm is not efficient with large search space.

2.4 Previous work
Researchers to schedule tasks on the resources have done several works. Each one had its

own constraints that used to efficiently tasks scheduling.

(Kumar & Verma, 2012) proposed an algorithm, which assigns priority to different tasks

based upon three parameters namely; tasks deadline, task age and the task length. After

that, tasks are arranged in a sorted order by considering the calculated priority. Thus, the

task with higher priority scheduled first

(Kumaresh, Prasidh, Arjunan, Subbhaash, & Sandhya, 2012) suggest a scheduling

method based on organizes the subtasks based on the priority of the users to prevent the

low priority jobs from starvation. Three levels of queues are used for each subtasks of

users’ priority (High, Medium and Low). The subtasks are assigned to the VMs in a

round-robin manner through selecting three subtasks at the same time from the three

levels of queues. The testing results indicate that the suggested algorithm enhance the

www.manaraa.com

15

utilization rate of the VMs and provide high performance compared to the other

scheduling algorithms.

(LIU & YANG, 2013) suggested an algorithm based on multi-QoS constraints and

genetic algorithm to schedule tasks. The QoS is based on the execution time, cost or

system load of the users’ tasks. Therefore, The QoS of the users are differ from each

other. the researcher gives users the ability to choose different scheduling goals according

to their own needs. The suggested scheduling algorithm focus on the Scheduling process

according to the users own needs. The results demonstrates that the proposed algorithm

satisfies the QoS constrains, ensures the system load and enhances the performance of the

task scheduling.

(Naseem, Al-Rahmawy, & Rashad, 2015) proposed an algorithm known as Performance

and Cost Algorithm (PCA) depend on assigning tasks’ priorities according to users’ tasks

profits, Three levels of queues are used to classify the users’ tasks priority (High, Medium

and Low). In addition, the aging technique with threshold value are used to avoid the

infinite waiting of tasks in the lower queues. The aging technique moves tasks in the lower

queues to the end of next high queue. The experiment showed that the suggested algorithm

optimize the resource utilization through reducing the makespan which lead to high

performance with low cost for the cloud users.

(Mohammed, 2016) proposed Best Level Job First algorithm based on four criteria; User

level, Time, Cost and load on the system. The suggested algorithm adapt to the users

level of the task and change its behavior in queue according to User level. The

experiment results show that the proposed algorithm reduces the waiting time for the

high-level users compared to the Short Job First (SJF) algorithm. In addition, the

suggested algorithm fast the turnaround time for the high-level users compared to the

Round Robin (RR) algorithm.

www.manaraa.com

16

(Miao, 2016) introduced an innovative task scheduling and resource allocation

strategy to improve the quality of service using thresholds with attributes and amount

(TAM) in cloud computing. The attribute-oriented thresholds used to decide on the

acceptance of tasks, and the provisioning of accepted tasks on appropriate (VMs,). The

experimental results show that the suggested method improve attribute matching between

tasks and VMs, with reduced the average execution time by 30 to 50% compared to the

non-filtering policy.

(Saini & Kaur, 2017) proposed an algorithm in which the priority is given to different

tasks according to specific attribute; User Level, Task urgency, Task Load and Time

queuing up. Then, tasks are arranged in a sorted order by considering the calculated

priority. Therefore, the task with higher priority scheduled first.

(Fadhil, 2017) proposed an algorithm called Best-Level-Job-First (BLJF) for private

cloud computing. The user level is used as parameter with the other commonly used

parameters in scheduling tasks. The tasks are classified according to the user level, and

then priority is given to the tasks according to the tasks users. Also the algorithm can

change its behavior by ignoring one or more parameters to satisfy the user need. The

experiment results showed that the BLJF algorithm provides highest QoS to the users

based on their levels.

(Ahmad, Ahmad, & Mirdha, 2017) introduced a new dynamic priority approach based

job scheduling algorithm in cloud computing. The proposed model aims to reduce the

waiting time, the turnaround time of tasks and to increase the throughput the system. The

Aging technique is used to add an aging factor as a weight for each task. The simulation

results can reduce the average waiting time, average turnaround time and total finish time

of tasks. In addition, the Starvation problem is enhanced.

(Chugh, 2018) introduced several job scheduling algorithms and suggested a hybrid job

scheduling algorithm to enhance the efficiency in cloud computing system.

www.manaraa.com

17

The suggested hybrid algorithm consists of two phases. In the first phase the multi queue

are managed and all the process over the different queues is being controlled. In the

second phase, the different jobs are controlled over queues. The experiment results show

that the proposed hybrid algorithm can reduce the waiting time for user jobs and enhance

the throughput of the overall cloud environment.

The previous work shows that, there are many parameters that can influence the

performance of cloud environment such as completion time, execution cost, VM load and

user level. However, many researches have been ignored the influence of increasing the

tasks that comes from low-level users. In this research, a new algorithm is proposed that

is focused on scheduling users’ tasks based on user priority level.

A Multi queue technique is used to classify the users’ tasks priority where each user level

has its own queue. In addition the tasks inside each queue schedule based on the priority

of tasks. In addition, the priority scheduling algorithm to improve the Quality of service

(QoS) for all users in the organization. HPJF also is compared with FCFS, SJF, RR and

with the private scheduling algorithm (BLJF) to evaluate the performance of the overall

cloud environment.

2.5 Chapter summary

In this chapter, the researcher presented a review of previous studies on tasks scheduling

algorithms. This review indicates that there are different parameters can affect the cloud

environment such as Execution Time, Cost, Load and user level. These parameters are

used to improve QOS for the users and keep the system performance at an acceptable

level. However, the effect of increasing the tasks that comes from low-level users is

currently ignored as a problem in the researches. Therefore, a new scenario focuses on

developing an algorithm to schedule users tasks that are based on user priority and to

avoid the starvation of the low-level users’ tasks.

www.manaraa.com

18

Chapter Three

Methodology

3.1 Overview

This study was proposed for scheduling the tasks in private cloud to boost the productivity of the

organizations that are based on user priority. The suggested scheduling algorithm classifies users

requests into number of priority queues to give each user suitable priority according to his

position in the organization. The tasks in the private cloud are exulted above other in some

criteria such as execution time, execution cost and the load of the resource. The weighted

summation of these criteria informs the weights for the tasks. The suggested scheduling

algorithm also can schedules the tasks on a resource according to the tasks weights. This chapter

illustrates the method followed in this research to develop HPJF algorithm. This chapter also

gives details on the various steps of scheduling process based on the priority of the users, the

suggested scheduling algorithm use the multi queue technique to overcome the starvation

problem. HPJF algorithm is implemented using the Cloudsim simulator. The Cloudsim simulator

is a well-known software tool for research in the area of resource allocation, provisioning, and

task scheduling for cloud computing (Arabnejad & Barbosa, 2014). The Cloudsim simulator tool

has been written in Java programming language. The Cloudsim simulator provides suitable

environment for designing heterogeneous resources, apply different scheduling algorithms and

measure their performance using the Eclipse IDE, which is integrated with the Cloudsim. The

proposed algorithm is implemented using the following steps that are presented in this chapter.

The results of this research are given and discussed in the next chapter.

3.2 The proposed algorithm (HPJF)
In the current study, the researcher suggests a scheduling algorithm based on user priority that is

used to improve the performance of executing tasks in cloud environment. The proposed

algorithm predicts the weight priority value for each incoming task to the VM. After that the task

initially assigns to the VM with minimum weight priority. Then, the tasks are classified over

multi-queue based on user priority and rearrange them based on the weight priority values.

Finally, the tasks are distributed over the VM to be executed based on the user priority. The

www.manaraa.com

19

overall design of the proposed algorithm is illustrated in Figure 3.1. The suggested scheduling

algorithm functionality is described as follows:

Figure 3.1: The overall design of the HPJF algorithm

3.2.1 Assign tasks into VM
In the first stage, the different types of users from different priority level users send their tasks to

be processed in cloud environment. Each incoming task to the cloud has a specific attribute

value that determines the priority of user, IO resource requirement, and CPU requirement and

RAM requirement that are used to calculate the time, cost and load required for execute the task.

In this research, CLOUDSIM simulator creates the tasks with different attribute values

according to the equations calculations. After that, HPJF algorithm predicts the weight priority

value for each incoming task to the VM. The weight priority value is calculated based on four

attributes represented by user priority level, execution time, execution cost and VM load.

The Tasks priority weight is calculated based on considered attributes that are calculated

previously (execution time, execution cost and VM load) as follow:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝜔1 𝑇𝑖𝑚𝑒 + 𝜔2 𝐶𝑜𝑠𝑡 + 𝜔3 Load + 𝜔4 User Level (1)

The parameters are arranged within each queue according to the values of the coefficients ratio

that will be discussed in chapter four.

www.manaraa.com

20

The execution time is calculated using equations (2) (Meng, Pappas, Li, 2010).

Execution Time = cloudlet. getCloudletLength()/ vm. getMips() (2)

The getCloudletLength is a function that returns the length of the task, and the getMips is a

function that returns the size of the data file.

On the other hand, execution cost is calculated according to both resource price and the cost

required for using the resource including CPU (𝑐𝑜𝑠𝑡𝑐𝑝𝑢), disk (𝑐𝑜𝑠𝑡𝑠𝑡𝑜𝑟), memory (𝑐𝑜𝑠𝑡𝑟𝑎𝑚) and

bandwidth (𝑐𝑜𝑠𝑡𝐵𝑊). The cost is expressed by the following equation (LIU, 2013):

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡𝑐𝑝𝑢 + 𝑐𝑜𝑠𝑡𝑟𝑎𝑚 + 𝑐𝑜𝑠𝑡𝐵𝑊 (3)

After that the load is estimated using three parameters, which are the CPU usage

(Load_cpu), the memory usage (Load_mem) and the use of the bandwidth rates (Load_br)

(Heinze et al., 2013). Therefore, load is estimated to guarantee the load balancing among CPU,

Memory and the bandwidth (Guang, Chen-Yang, Daoguoli, 2013).

The load is expressed by the following equation (LIU, 2013) :

𝐿𝑜𝑎𝑑 = 1 − ∏ (1 − 𝐿𝑜𝑎𝑑𝑘)𝜔𝐿𝑘3
𝑘=1 (4)

User Level is also added to the tasks weight in order to classify them at each queue.

The priority calculation process is a multi-objective function with a specific importance ratio

for each objective represented by the coefficients ratio () in the given function, to satisfy

the applications requirement. For example, some users request a fast execution task, their tasks

is chosen to be served first; by increase the ratio of time, while other users request tasks that

don’t required much money, their tasks are given priority to be served by increase the ratio of

cost, and so on (Ji, Bao, & Zhu, 2017).

www.manaraa.com

21

The function CalWeight is used to calculate tasks priority weight at each user based on execution

time, execution cost and VM load attributes as follows:

Function: CalWeight ()

Input: Queue tasks

Output: Tasks priority

For Task_id =0 to last_task at the queue

Priority weight = ω1 Time + ω2 Cost + ω3 Load +ω4 user priority

return Priority weight
End For

HPJF algorithm calculates the expected the weight priority value for each incoming task to be

executed on VM. Then, the incoming task initially sorted according minimum weight priority

value. As well as, the VM is allocated for the tasks that come from each user queue based their

priority queue.

3.2.2 Tasks classification into queues
In this stage, HPJF checks the user priority attribute value for each incoming task to classify the

tasks over the user queues. For the user priority parameter, the values are assumed between 1

and 10 to specify the user priority according to the user needs in the organization; in which each

user level has its own queue.

There are two function that are used to distribute tasks to the priority queues; The function

GetUserLevel is used to test the priority of user parameter values of the incoming tasks and The

function ClassificationTasks is used to distribute the tasks to the appropriate queues as follows:

Function: GetUserLevel ()

Input: The incoming tasks

Output: Type of user
return UserLevel;

www.manaraa.com

22

Function: ClassificationTasks()

Input: The incoming tasks

Output: TaskGroup(1,2,3,4,5,6,7,8,9,10).

for (intger i from 0 to tasks numbers)
 Task ta= (Task).getTasks(i);
 id=ta.getUser();
 if (id == 1) TaskGroup1.add(ta);// Manager user
 else if (id == 2) TaskGroup2.add(ta);
 else if (id == 3) TaskGroup3.add(ta);
 else if (id == 4) TaskGroup4.add(ta);
 else if (id == 5) TaskGroup5.add(ta);// Middle user
 else if (id == 6) TaskGroup6.add(ta);
 else if (id == 7) TaskGroup7.add(ta);
 else if (id == 8) TaskGroup8.add(ta);
 else if (id == 9) TaskGroup9.add(ta);
 else
 TaskGroup10.add(ta);// End users
End For

Therefore, the tasks that are sent from the managers, placed in the high-level queue. Whereas,

the tasks from users who have middle priority are located in the middle priority queues. As well

as, the tasks from users who have low priority are located in the low priority queues.

3.2.3 Sort tasks within each queue
After distribute the tasks into different priority queues (High, middle and low) based on user

priority, the tasks are sorted in ascending order within each queue based on the weight values of

each task. Therefore, the task which has the lowest priority weight value is the first task will be

sent to the VM to be executed.

3.2.4 Send tasks to VM
The suggested algorithm uses the multi queue technique to reduce starvation in a scheduling

system. The multi queue technique works by give each queue a chance to use the resource in

which large number of tasks is taken from the high priority queue and the small number of tasks

is taken from the lower priority queue. The scheduler takes 10 tasks from manager queue then 9

tasks from Q9 and so on by using the function as shown below

www.manaraa.com

23

Function: CloudletSchedulling ()

Input: TaskGroup1, TaskGroup2, TaskGroup3, TaskGroup4, TaskGroup5, TaskGroup6,

TaskGroup7, TaskGroup8,TaskGroup9, TaskGroup10

Output: Rotate scheduler to the priority queue in round robin fashion.

while size(TaskGroup1) not 0 or size (TaskGroup2) not 0 or size(TaskGroup3)!= 0

or size (TaskGroup4) not 0 or size (TaskGroup5) not 0 or size(TaskGroup6)!= 0

or size (TaskGroup7) not 0 or size (TaskGroup8) not 0 or size(TaskGroup9)!= 0

or size (TaskGroup10) not 0

 if(j=1 And size (TaskGroup1) not 0){ schedule (TaskGroup1,10) ;count++ End If

 if(j=2 And size (TaskGroup2) not 0){ schedule (TaskGroup2, 9) ;count++ End If

 if(j=3 And size (TaskGroup3) not 0){ schedule (TaskGroup3, 8) ;count++ End If

 if(j=4 And size (TaskGroup4) not 0){ schedule (TaskGroup4, 7) ;count++ End If

 if(j=5 And size (TaskGroup5) not 0){ schedule (TaskGroup5,6) ;count++ End If

 if(j=6 And size (TaskGroup6) not 0){ schedule (TaskGroup6, 5) ;count++ End If

 if(j=7 And size (TaskGroup7) not 0){ schedule (TaskGroup7,4) ;count++ End If

 if(j=8 And size (TaskGroup8) not 0){ schedule (TaskGroup8,3) ;count++ End If

 if(j=9 And size (TaskGroup9) not 0){ schedule (TaskGroup9,2) ;count++ End If

 if(j=10 And size (TaskGroup10)not 0){ schedule (TaskGroup1,1) ; count= 1) End If

End while

As well as, the scheduler take number of tasks from each queue in each rotation according to

user priority for example, the scheduler takes 10 tasks from the manager queue and one task

from the End user queue. Moreever, each queue has appropriate threshold value. If the queue

size less than the threshold value of that queue, Note that the threshold values for each queue

have been tested in chapter four to show which is the best threshold value for each queue.

Therefore, the whole tasks in the queue will be taken, using the function Schedule () as shown

below:

Function: schedule (TaskGroup, tasksNo)

www.manaraa.com

24

Input: TaskGroup, tasksNo

Output: assign tasks to VM

J= TaskGroup.Size

 If (j < tasksNo)

For Task_id =0 to tasksNo

 Add Task_id to FinalGroup

 Add Task_id from TempGroup

 End For

For Task_id =0 to tasksNo

 Remove Task_id from TaskGroup

 Remove Task_id from TempGroup

 End For

End If

Else

For Task_id =0 to TaskGroup.Size

 Add Task_id to FinalGroup

 Add Task_id to TempGroup

 End For

For Task_id = 0 to TaskGroup.Size

 Remove Task_id from TaskGroup

 Remove Task_id from TempGroup

 End For

End Else

3.3 An example for the proposed algorithm
Let us as considered there are 20 incoming tasks that are generated by different priority level of

users as in table 3.2. The values 1, refers to the highest priority users. Whereas, 5 refers to

middle priority users. While, 10 values, refers to Lowest priority users. The tasks in this example

are generated from the user level 8, 9 and 10.

The suggested algorithm is implemented in the following steps:

Step 1: Assign tasks into VM

In the first step, HPJF algorithm calculates the weight value for each incoming task over all the

VM. The weight priority value is calculated based on three attributes represented by execution

time, execution cost and VM load using equation (1), (4), (5) and (6) as well as the user priority

attributes. The results of this step can be shown in Table 3.1.

www.manaraa.com

25

Table 3.1: Incoming tasks by different priority level of users

Task User Priority Time Cost Load Weight

9 9 2.191 0.14 0.0078 4.2859

1 8 1.077 0.13 0.023 3.5508

18 9 1.992 0.17 0.0275 4.2338

15 10 2.116 0.16 0.0037 4.6674

2 10 2.203 0.1 0.0074 4.6817

11 9 2.976 0.2 0.0116 4.5337

14 8 2.554 0.21 0.0153 4.0097

17 8 1.034 0.19 0.0149 3.5498

12 9 1.166 0.14 0.0073 3.9783

6 8 1.55 0.09 0.0236 3.6858

0 10 1.531 0.13 0.0039 4.4861

13 9 1.125 0.17 0.0186 3.974

7 10 2.706 0.21 0 4.8531

4 9 1.315 0.17 0.0186 4.0309

16 10 2.571 0.21 0.0272 4.8156

19 8 2.071 0.08 0.0075 3.8389

5 10 1.646 0.16 0.0037 4.5266

10 8 2.678 0.14 0.0268 4.0332

8 8 2.781 0.15 0.0074 4.0646

3 9 2.046 0.14 0.0109 4.2431

Step 2: Tasks classification into queues

The suggested algorithm uses the function getUser to examine the user priority of the incoming

tasks to send the tasks to the appropriate queues so all the tasks with user priority equal to 8 will

be located in the highest queue as shown in Table 3.2.

www.manaraa.com

26

Table 3.2 Tasks classification into highest-level queue

Task id User Priority Time Cost Load Weight

1 8 1.077 0.13 0.023 3.5508

14 8 2.554 0.21 0.0153 4.0097

17 8 1.034 0.19 0.0149 3.5498

6 8 1.55 0.09 0.0236 3.6858

19 8 2.071 0.08 0.0075 3.8389

10 8 2.678 0.14 0.0268 4.0332

8 8 2.781 0.15 0.0074 4.0646

On the other hand, all the tasks with user priority equal to 9 will be located in the second queue

as shown in Table 3.3.

Table 3.3 Tasks classification into middle level queue

Task id User Priority Time Cost Load Weight

9 9 2.191 0.14 0.0078 4.2859

18 9 1.992 0.17 0.0275 4.2338

11 9 2.976 0.2 0.0116 4.5337

12 9 1.166 0.14 0.0073 3.9783

13 9 1.125 0.17 0.0186 3.974

4 9 1.315 0.17 0.0186 4.0309

3 9 2.046 0.14 0.0109 4.2431

Furthermore, all the tasks with user priority equal to 10 will stored in the third level queue as

shown in Table 3.4.

Table 3.4 Tasks classification into low-level queue

Task Id User Priority Time Cost Load Weight

15 10 2.116 0.16 0.0037 4.6674

2 10 2.203 0.1 0.0074 4.6817

0 10 1.531 0.13 0.0039 4.4861

7 10 2.706 0.21 0 4.8531

www.manaraa.com

27

16 10 2.571 0.21 0.0272 4.8156

5 10 1.646 0.16 0.0037 4.5266

Step 3: Sort tasks within each queue

After distribute the tasks over the user priority queues, the tasks are rearranged within each

queue based on the priority weight of each task to be ready to execute on the VM. The results for

the user priority 8, 9 and 10 show as in Table 3.5, Table 3.6 and Table 3.7 respectively.

Table 3.5: Rearrange tasks in high-level queue based on priority weight value

Task id User Priority Time Cost Load Weight

17 8 1.034 0.19 0.0149 3.5498

1 8 1.077 0.13 0.023 3.5508

6 8 1.55 0.09 0.0236 3.6858

19 8 2.071 0.08 0.0075 3.8389

14 8 2.554 0.21 0.0153 4.0097

10 8 2.678 0.14 0.0268 4.0332

8 8 2.781 0.15 0.0074 4.0646

Table 3.6: Rearrange tasks in middle-level queue based on priority weight value

Task id User Priority Time Cost Load Weight

13 9 1.125 0.17 0.0186 3.974

12 9 1.166 0.14 0.0073 3.9783

4 9 1.315 0.17 0.0186 4.0309

18 9 1.992 0.17 0.0275 4.2338

3 9 2.046 0.14 0.0109 4.2431

9 9 2.191 0.14 0.0078 4.2859

11 9 2.976 0.2 0.0116 4.5337

www.manaraa.com

28

Table 3.7: Rearrange tasks in low-level queue based on priority weight value

Task Id User Priority Time Cost Load Weight

0 10 1.531 0.13 0.0039 4.4861

5 10 1.646 0.16 0.0037 4.5266

15 10 2.116 0.16 0.0037 4.6674

2 10 2.203 0.1 0.0074 4.6817

16 10 2.571 0.21 0.0272 4.8156

7 10 2.706 0.21 0 4.8531

Step 4: Send tasks to VM

As discussed previously in step 4.3.1, the scheduler begins its loop from the highest priority

queue and continues in rotation among the available queues in a round robin fashion. The

scheduler takes a number of tasks from each queue according to the priority for the users. The

tasks will be moved to the VM as shown in Table 3.8.

Table 3.8: Tasks classification after applying HPJF technique

Task User Priority Time Cost Load Weight

17 8 1.034 0.19 0.0149 3.5498

1 8 1.077 0.13 0.023 3.5508

6 8 1.55 0.09 0.0236 3.6858

13 9 1.125 0.17 0.0186 3.974

12 9 1.166 0.14 0.0073 3.9783

0 10 1.531 0.13 0.0039 4.4861

19 8 2.071 0.08 0.0075 3.8389

14 8 2.554 0.21 0.0153 4.0097

10 8 2.678 0.14 0.0268 4.0332

4 9 1.315 0.17 0.0186 4.0309

18 9 1.992 0.17 0.0275 4.2338

5 10 1.646 0.16 0.0037 4.5266

8 8 2.781 0.15 0.0074 4.0646

www.manaraa.com

29

3 9 2.046 0.14 0.0109 4.2431

9 9 2.191 0.14 0.0078 4.2859

15 10 2.116 0.16 0.0037 4.6674

11 9 2.976 0.2 0.0116 4.5337

2 10 2.203 0.1 0.0074 4.6817

16 10 2.571 0.21 0.0272 4.8156

7 10 2.706 0.21 0 4.8531

Finally, the algorithm uses a variable to determine the number of tasks that is taken from each

queue in each rotation where the value of the variable is equivalent to the queue identification the

implementation of the proposed Algorithm is represented by the following flowchart to explain

the methodology for this algorithm as shown in figure 3.7.

 No Yes

 No

 Yes

Classifies the tasks into the Jobs placed into respective

Queues.

Send j tasks

from Q j to VM

IF queue (j) is

Empty

IF All queues are

Empty

J=10

Arrange the tasks within each queue according to their

weights.

Start

www.manaraa.com

30

 Figure 3.2: Flowchart for the HPJF Algorithm

J=j-1

IF j=1

Empty

Stop

www.manaraa.com

31

Chapter Four

Simulation results

4.1 Overview
As presented previously, this thesis presents a new task scheduling strategy based on

multi-level queue allowing high tasks to move up to higher queue propriety levels. It is

expected that HPJF algorithm will reduce waiting and turnaround times for the tasks,

improving cloud performance. The performance of HPJF algorithm is compared with the

performance of the traditional and well-known scheduling algorithms FCFS, RR, SJF,

and also with the private scheduling algorithm BLJF (Fadhil, 2017). FCFS and SJF have

been chosen because they are standard algorithms, and also because FCFS is fair and it is

widely used in other similar studies (Ababneh, 2006). RR also is an algorithm that give

each task equal chance (time slice) to get a resource in which all tasks have the same

priority (Sotomayor, Montero, Llorente, & Foster, 2009). BLJF is a recent scheduling

algorithm for private clouds and it is also based on user priority. For this work, a cloud

simulation tool is selected so as to mimic a real cloud environment and evaluate the

performance of task scheduling and resource allocation with the proposed strategy.

4.2 Introduction to simulation used

In this thesis, the method of the study is simulation because the cloud environment is large and

complex. Cloud users have different Quality of Service (QoS) requirements and the cloud itself

needs to accommodate varying demands. It is difficult to perform tests using a real-world Cloud

(Buyya,et al, 2010). This is because the system may not exist, take much time to build, and be

costly to build. In the simulation, many experiments have been conducted to examine the effect

of moving tasks between queues.

The CloudSim simulator has been selected to implement the proposed algorithm. It is a well-

known software that has been written in JAVA; a powerful object-oriented programming

language (Ahmad and Sabyasachi, 2014). CloudSim has been widely used for evaluating various

algorithms in the area of resource allocation, provisioning, and task scheduling for cloud

computing (Arabnejad & Barbosa, 2014).

www.manaraa.com

32

The main components of CloudSim are the Datacenter, Host, Virtual machines (VMs), and

Datacenter Broker. A datacenter consists of a set of hosts, where a host represents the physical

computing node in a cloud. Each host consists of a set of virtual machines and is responsible for

managing VMs during their life cycle. The datacenter broker is responsible for load balancing of

VMs and managing the routing of user tasks among data centers based on different policies

(Buyya, et al, 2010).

4. 3 Performance Evaluation Factors and Criteria for the HPJF

Algorithm
To assess the performance of the proposed algorithm, some factors for describing the evaluation

criteria are needed.

For the user priority factor in the proposed algorithm, the number of user priority levels are

assumed to be in the range 1 to 10, where 1 represents the highest user priority level and 10 the

lowest user priority level.

The values of weighting coefficients vary from 0 to 1 for the following factors that are used to

calculate the task weights, TWs. The TWs are used to sort tasks in the queues.

TW= 𝑈𝑠𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∗ 𝜔1+Execution time ∗ 𝜔2+Execution 𝑐𝑜𝑠𝑡 ∗ 𝜔3+ Load*𝜔4

𝜔1+𝜔2 + 𝜔3 + 𝜔4=1, where the values of these coefficients ratio is 0.4, 0.3, 0.2 and 0.1 respectively.

The coefficients ratio 𝜔1 is the highest value because this is the main goal of the algorithm

HPJF. Therefore, The tasks that have the same weight are sorted according to their initial order.

The aim of the simulations is to evaluate the factors that affect pricing in a private cloud. The

simulated private cloud environment consists of one datacenter and one broker. The datacenter

uses x86 architecture and running in a Linux operating system and Xen virtual machine manage

The following table includes the specifications for both VM and Cloudlet in the datacenter:

Table 4.1: the specifications for both VM and Cloudlet.

VM Cloudlet

CPU 1000 MIPS Length [1000,3000] MIPS

RAM 1024 MB File size [300,1000] MB

www.manaraa.com

33

Storage 1GB Output size [300,1000] MB

Bandwidth 1000 bps Number of task [100,1000]

The development environment for the simulation experiments has been described in the previous

chapter. It is CloudSim 3.0.3, JDK 18 and Eclipse Kepler Server Release 1. The experiments

were performed on a Windows 7 (64-bit), Intel core i3-2365M CPU, 1.40 GHz Processor, 4.0 G

installed memory, and 500GB Hard disk drive.

The main performance parameters used are Average Waiting Time (AWT) and Average

Turnaround Time (ATT) of tasks. The Turnaround time of a task is the time that the task spends

in the system from arrival to departure, while the waiting time of a task is the time that the task

spends in the queue before the task starts execution.

4.3 Experimental Results and Discussion
To perform simple but typical experiments, one virtual machine and the number of tasks varying

from 100 to 1000. The tasks are randomly generated and submitted to the private cloud system.

This is done on the assumption that there are 10 priority levels of users in the institution that uses

the private cloud system. Among the tasks under the same user priority level, some tasks are

exulted above other in some criteria. For example, for the tasks that request computation Service,

they will be schedule first, for the tasks that request an inexpensive Service; they will be

schedule second and so in order to satisfy the organization needs.

4.3.1 Applying Threshold to each user level queue

Priority scheduling can suffer from a major problem known as indefinite blocking, or starvation,

where a low-priority task can wait a very long time because there are always some other tasks

around that have higher priority.

Applying the multi-level queue technique may reduce the tasks waiting time in which each user

level has its own priority queue. Moreover, each user level is allowed to use the resource

according to the priority values for the user level queue. These values represent the maximum

www.manaraa.com

34

number of tasks (threshold) that send to the resource in each rotation.

Therefore, applying the multi-level queue technique indicates that the average time a task spends

in the run queue is reduced, which leads to reducing task starvation.

4.3.2. The Evaluation results for each user priority level:

Figures 4.1 and 4.2 represent the simulation results for both the average waiting time and

average turnaround time when they are plotted against number of user levels for different task

scheduling algorithms such as FCFS, SJF, RR, BLJF, and HPJF algorithm. The number of tasks

in this experiment is 1000 tasks submitted to the private cloud system.

Based on the results, it can be inferred that the performance of HPJF algorithm is better than that

of the other traditional scheduling algorithms on some user priority levels. The performance of

HPJF algorithm is better than FCFS from point 1 to 7 and SJF from point 1 to 6. The

performance of HPJF algorithm is also better than RR from point 1 to 9 and is better than BLJF

from point 2 to 10. This is because in HPJF algorithm the tasks are sortied according to user

priority while FCFS, RR and SJF do not consider user priority. Moreover, the improvement in

AWT and ATT is due to allowing starved tasks with low levels of propriety to be executed with

high priority tasks.

 Figure 4.1 Average Waiting Time vs. user level

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

A
W

T
(m

ill
is

e
co

n
d

s)

User level

Average Waiting Time

FCFS
SJF
HPJF
BLJF
RR

www.manaraa.com

35

Figure 4.2 Average Turnaround Time vs. user level

4.3.3 The Evaluation results when the tasks number is increased:
In this section, we consider the same behavior of HPJF algorithm as discussed previously in

chapter three and we will test a number of experiments when the numbers of tasks is changed to

stand on the performance of the algorithm HPJF.

Figures 4.3 and 4.4 display the simulation results (AWT and ATT) that have been measured for

the five scheduling algorithms BLJF, SJF, FCFS,RR and HPJF algorithm for different numbers

of tasks using the same number of levels of users (10 levels of users).

From the results, it can be noticed that the performance of HPJF algorithm is better than that of

the traditional scheduling algorithms (FCFS and RR) and the private scheduling algorithm

(BLJF) when the number of tasks submitted to the cloud server increased gradually. This means

that using multi queue and priority scheduling do not affect negatively on the algorithm and

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

A
TT

 (
m

ill
is

e
co

n
d

s)

User level

Average Turnaround Time

FCFS

SJF

HPJF

BLJF

RR

www.manaraa.com

36

gives positively slated results for the system. The results can be seen in the figures below.

Figure 4.3 Average Waiting Time vs. Number of tasks

 Figure 4.4 Average Turnaround Time vs. Number of tasks

0

200

400

600

800

1000

1200

1400

100 200 300 400 500 600 700 800 900 1000

A
W

T
(m

ill
is

e
co

n
d

s)

Number of Tasks

Average Waiting Time

FCFS

SJF

HPJF

BLJF

RR

0

200

400

600

800

1000

1200

1400

1600

100 200 300 400 500 600 700 800 900 1000

A
TT

 (
m

ill
is

e
co

n
d

s)

Number of Tasks

Total Average Turnaround Time

FCFS

SJF

HPJF

BLJF

RR

www.manaraa.com

37

44.3.. The Evaluation results when the number of user levels is

increased:
We have seen in Figures 4.5 and 4.6 that the performance of the proposed Algorithm is

better than that of BLJF in terms of both AWT and ATT, and it is better especially when

the number of user levels is small. This is because the opportunity is given to the other

factors to be sorted according through, where the tasks under the same user level is sorted

according to their execution time at first, if the tasks have the same user level and

execution time and they will be sorted according to their cost and so on. However, AWT

and ATT increase gradually as the number of user levels becomes large; this is because the

small number of tasks becomes under the same user level when the number of user levels

increased which may not be sorted according to the other factors such as execution time,

cost of execution and system load.

In the worst case, when each task comes from different user level (this is abnormal

situation), then it will take the largest waiting time and turnaround time because tasks will

be sorted only according to the user level, and tasks are not given the opportunity to be

sorted according to the other factors.

From the results, it can be noticed that the number of user levels is important for the

performance efficiency. However, in some cases, the user level factor gives inferior results

on the performance when the number of user levels becomes very large for such

organizations.

Figure 4.5 Average Waiting Time vs. Number of user levels

0

500

1000

1500

1 2 4 8 16 32 64

A
W

T
(m

ill
is

e
co

n
d

s)

User level

Average Waiting Time

HPJF

www.manaraa.com

38

Figure 4.6 Average Turnaround Time vs. Number of user levels

54.3. . The Evaluation results when the behavior of HPJF is changed:
 In this section, we consider the behavior of HPJF algorithm as discussed previously in chapter

three and we will test a number of cases to change the behavior to show which of that cases is

better. The followed method in our work is that when the scheduler takes ten tasks from manager

queue (Q10) and takes nine tasks from the lower queue (Q9) and so on until it reach to the lowest

queue one (Q1); the scheduler will take one tasks from it.

 We have seen in Figures 4.7 and 4.8 that the performance of HPJF Algorithm is better in terms

of both AWT and ATT when the number of tasks number that is taken from each queue in each

rotation is very small. This is because the lower queues don’t wait for a long time for scheduling

their tasks to avoid the starvation problem.

 From the results, it can be noticed that the number of tasks number that is taken from each

queue in each rotation is important for the performance efficiency. However, in the worst case,

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64

A
TT

 (
m

ill
is

e
co

n
d

s)

User level

Average Turnaround Time

HPJF

BLJF

www.manaraa.com

39

the behavior gives inferior results on the performance when the number of tasks number that is

taken from each queue is very large.

Figure 4.7 Average Waiting Time vs. i*Number of tasks taken from each queue

Figure 4.8 Average Turnaround Time vs. i*Number of tasks taken from each queue

850

860

870

880

890

900

910

920

930

940

950

1 2 3 4 5 6 7 8 9 10

A
W

T
(m

ill
is

e
co

n
d

s)

i value

Average Waiting Time

HPJF

850

860

870

880

890

900

910

920

930

940

950

1 2 3 4 5 6 7 8 9 10

A
TT

 (
m

ill
is

e
co

n
d

s)

i value

Average Turnaround Time

HPJF

www.manaraa.com

40

4.3.6. The Evaluation results when the order of parameters is changed:
 In this section, we consider set of experiments that effect on the behavior of HPJF algorithm.

These experiments lead to replace the order of parameters to show which of that experiments is

better. The followed order in our work is represented by experiment one (Exp1) in table below.

In Table 4.2, HPJF algorithm is tested by set experiments (Exps) to test the ability of the algorithm

HPJF, each experiments uses different values of the coefficients ratio for the parameters used.

This will change the values of the tasks' weights and certainly lead to change performance of

HPJF algorithm. This is done on the assumption that the values of w1, w2, w3, and w4 are

referred to the coefficients ratio for the Execution Time, Cost, Load, and user level respectively.

We also assumed the parameter which has the highest the coefficients ratio is that the parameter

selected to be first. ‘User Level’ parameter has always the highest coefficients ratio because this

is the main goal of the algorithm HPJF.

 We have seen in Figures 4.9 and 4.10 that the performance of HPJF Algorithm is better in terms

of both AWT and ATT when the order of the parameters is taken from Exp1. This is because that

which the same user level are sorted according to their execution time, cost and load

respectively.

Table 4.2: set of the experiments uses different values of the coefficients ratio.

 From the results, it can be noticed that the order of parameters within each queue is important

for the performance efficiency. However, in the worst case, the behavior gives inferior results on

Performance
measure (W1) (W2) (W3) (W4)

Exp1
0.3 0.2 0.1 0.4

Exp2
0.3 0.1 0.2 0.4

Exp3
0.2 0.3 0.1 0.4

Exp4
0.1 0.3 0.2 0.4

Exp5
0.2 0.1 0.3 0.4

Exp6
0.1 0.2 0.3 0.4

www.manaraa.com

41

the performance when the parameters are arranged according to Exp5.

Figure 4.9 Average Waiting Time vs. the experiments in Table 4.2.

Figure 4.10 Average Turnaround Time vs. the experiments in Table 4.2

4.3.4 The evaluation results for each scheduling algorithm:
In this section, we consider the same scenario as discussed previously in Figures 4.1 and 4.2

using the same number of levels of users and the same number of tasks. The simulation results

for the AWT and ATT for all levels can be presented in the form of groups to show which task

scheduling algorithm is better and also to show which of the five scheduling algorithms has

inferior results.

876

878

880

882

884

886

888

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6

A
W

T
(m

ill
is

e
co

n
d

s)

User level

Average Waiting Time

HPJF

878

880

882

884

886

888

890

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6

A
TT

 (
m

ill
is

e
co

n
d

s)

User level

Average Turnaround Time

HPJF

www.manaraa.com

42

Table 4.3: Average Waiting Time and Average Turnaround time for each scheduling Algorithm.

In Table 4.3, HPJF algorithm succeeds in reducing the average waiting time for all user priority levels in

comparing with BLJF and RR. The waiting time for HPJF algorithm is 883.663301, which is approximately

21.6%, 33.60%, and 10.9% better than BLJF, RR, and FCFS respectively. The results can be analyzed using

the bar chart shown in Figure 4.11.

 Figure 4.11 Average Waiting Time vs. scheduling Algorithms

0

200

400

600

800

1000

1200

1400

A
W

T
 (

m
ill

is
e

co
n

d
s)

Schedulling Algorithm

Average Waiting Time

HPJF

BLJF

FCFS

SJF

RR

Performance
measure The Proposed BLJF SJF FCFS RR

AWT
883.663301 1128.234 833.9167 991.8011 1331.086

ATT
885.16416 1130.22942 835.919 997.3852 1370.975436

www.manaraa.com

43

In the table shown previously, HPJF algorithm also succeeds in reducing the average

Turnaround time at over user priority levels. The average Turnaround time for HPJF algorithm is

885.16416, which is approximately 21.68%, 35.40%, and 11.25% better than BLJF, RR, and FCFS

respectively. The results can be analyzed using the bar chart shown in Figure 4.12.

Figure 4.12 Average Turnaround Time vs. scheduling Algorithms

4.4 Summary
The results presented in this chapter show that using multiple priority queues and applying the

priority technique could boost the productivity of organizations. The performance of the

proposed policy has been compared against that of the existing FCFS, SJF, RR and BLJF

policies. The simulation results show that HPJF algorithm can significantly improve performance

of the system in general. The performance of HPJF algorithm is better at both lower and middle

levels in particular. However, the performance of the system is not better from others on all

levels but it is not return negative result. In the future, it will be better to find a technique to

improve the performance at all user levels.

Therefore, Reducing the waiting time indicates that the average time a task spends in the waiting

queue is reduced which leads to reducing task starvation through allowing low priority tasks to

be executed with high priority. This helped to produce tasks scheduling algorithm in private

cloud computing for the organizations that are based in user priority.

0

200

400

600

800

1000

1200

1400

1600
A

TT
 (

m
ill

is
e

co
n

d
s)

Shedulling Algorithm

Average Turnaround Time

HPJF

BLJF

FCFS

SJF

RR

www.manaraa.com

44

Chapter Five

Conclusion and Future Work

5.1 Conclusion
Task scheduling is one of the major researches which play a major role of improving the

performance of the cloud system by arrangement the tasks in way that satisfy the user

requirements. An efficient task scheduling algorithm is that which reduce waiting time

Turnaround time for the tasks.

In this thesis, the motivation of task scheduling is preserved many lower priority tasks are

starved when the execution priority is given to the higher priority tasks, a task may waits for a

very long time to be executed. Starvation is frequently brought on by lapses in a scheduling

calculation.

The experiment results indicates that proposed approach has produced better results in term of

overall average waiting and overall average Turnaround time over the BLJF and the other

traditional scheduling Algorithms. Although HPJF algorithm shows better result for high and

middle priority user levels, still there is a need to enhance the results. In future, the results can be

improved at all levels.

5.2 Directions for the Future Works:
There are several interesting issues and open problems that worth further investigation. Some of

them are briefly described below.

1- The proposed strategy has been shown to perform well in independent tasks. It would be

interesting to adapt the dependent tasks or event that both dependent and independent

tasks which will certainly affect the performance on Cloud system.

2- In this research, the tasks based user priority can be tested after clustering the resources

based on user priority which will certainly affect the performance on Cloud System.

3- The proposed strategy has been shown to perform well when using multi queue. It would

be interesting to adapt multi queue scheduling algorithm based on RR in which queues

use dynamic quantum values to achieved better reduction in waiting and thus reduce task

starvation.

4- Other factors like the energy efficiency, and the power consumption could be taken into

account for proper scheduling of tasks.

www.manaraa.com

45

Arabic Summary

خدم مصادر دم ان يستيستطيع المستخ . العديد من التطبيقاتت في ماهذه الايام اكتسبت الحوسبه السحابية الكثير من الاهتما

 م باستخدامالمها ة الحوسبه السحابية مناسبه لخدمة عدد كبير مننيعلى الطلب وفي اي وقت وفي اي زمن. ب ا السحابه بناء

ذ هزة للتنفيت الجامصادر الساحبيه المتاحه. جدولة المهام عامل مهم في الحوسبه السحابية كما انه يقوم بادارة الطلبالا

م هي لمستخدولوية اأالسحابية. في الحوسبه السحابية الخاصة، ةالحقيقية للنقل في مصادر الحوسب ةين السعسبهدف تح

يهم لذين لدالتي تجب ان تأخذ في عين الأعتبار بحيث تعطى للمستخدمين اواحده من احتياجات المسخدم في المنظمات

الآن في له الىاي طريقة تامة لحل مشكلة الاستطاله المستحي اطلبات مهمه. على كل حال، الكثير من الباحثين لم يقدمو

 . الطرق المبنيه على اولوية المهام

لمقترحة ا. الطريقة HPJFسميت خاصةلعلى الحوسبة السحابية ا في هذه الرساله اقترحت طريقة فعاله لجدوله المهام

العبئ والتنفيذ، تكلفةالتنفيذ، المستغرق في وقتالمستخدم، اولويةام على مصادر السحابة بطريقة مبنية على هتعين الم

يل تحصلى عالقدرة حد من مشكلة عدملاستخدام تقنيه متعددة الصفوف لتم على المصدر الافتراضي. بالاضافة الى ذلك

 .المصدر التي تحدث في مثل هذا المنظمات

قارنتها مع ثلاث م. نتائج الطريقة المقترحة تمت CloudSimالمقترحة باستخدام محاكي يسمى تم تطيبق طريقة الجدولة

ار . نتائج التجارب والاختبارات تعطي تائج افضل من حيث وقت الانتظFCFS ،SJF، RR ،BLJF اخرى خوارزميات

 مع خوارزميات الجدولة الاخرى. ة ووقت الوصول مقارنت

www.manaraa.com

46

References
Agarwal, D., & Jain, S. (2014). Efficient optimal algorithm of task scheduling in cloud computing

environment. arXiv preprint arXiv:1404.2076.

Ahmad, E. S., Ahmad, E. I., & Mirdha, E. S. (2017). A Novel Dynamic Priority Based Job Scheduling

Approach for Cloud Environment.

Allan, J., Aslam, J., Belkin, N., Buckley, C., Callan, J., Croft, B., . . . Harper, D. J. (2003). Challenges in

information retrieval and language modeling: report of a workshop held at the center for

intelligent information retrieval, University of Massachusetts Amherst, September 2002. Paper

presented at the ACM SIGIR Forum.

Anuradha, V., & Sumathi, D. (2014). A survey on resource allocation strategies in cloud computing. Paper

presented at the Information Communication and Embedded Systems (ICICES), 2014

International Conference on. IEEE; 2014.

Arabnejad, H., & Barbosa, J. G. (2014). A budget constrained scheduling algorithm for workflow

applications. Journal of grid computing, 12(4), 665-679.

Aslanzadeh, S. (2016). Anticipatory models of load balancing in cloud computing.

Awan, M., & Shah, M. A. (2015). A survey on task scheduling algorithms in cloud computing

environment. International Journal of Computer and Information Technology, 4(2), 441-448.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463): ACM press New

York.

Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther, A. I., . . . Hensgen, D. (2001). A

comparison of eleven static heuristics for mapping a class of independent tasks onto

heterogeneous distributed computing systems. Journal of Parallel and Distributed computing,

61(6), 810-837.

Ababneh, I., 2006. An efficient free-list submesh allocation scheme for twodimensional mesh-connected

multicomputers. Journal of Systems and Software 79 (8), 1168–1179.

Chitra, S., Madhusudhanan, B., Sakthidharan, G., & Saravanan, P. (2014). Local minima jump PSO for

workflow scheduling in cloud computing environments Advances in computer science and its

applications (pp. 1225-1234): Springer.

www.manaraa.com

47

Chugh, C. (2018). A Survey on Several Job Scheduling Techniques in Cloud Computing. Journal of

Network Communications and Emerging Technologies (JNCET) www. jncet. org, 8(4).

Ergu, D., Kou, G., Peng, Y., Shi, Y., & Shi, Y. (2013). The analytic hierarchy process: task scheduling and

resource allocation in cloud computing environment. The Journal of Supercomputing, 64(3), 835-

848.

Fadhil, M. (2017). Tasks Scheduling in Private Cloud Based on Levels of Users. International Journal of

Open Information Technologies, 5(4), 22-28.

Fard, H. M., Prodan, R., Barrionuevo, J. J. D., & Fahringer, T. (2012). A multi-objective approach for

workflow scheduling in heterogeneous environments. Paper presented at the Proceedings of the

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid

2012).

Ghanbari, S., & Othman, M. (2012). A priority based job scheduling algorithm in cloud computing.

Procedia Engineering, 50(1), 778-785.

Ghazizadeh, A. (2012). Cloud computing benefits and architecture in e-learning. Paper presented at the

Wireless, Mobile and Ubiquitous Technology in Education (WMUTE), 2012 IEEE Seventh

International Conference on.

Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012). Task scheduling optimization in cloud computing based on

heuristic algorithm. Journal of networks, 7(3), 547.

Heinze, T., Ji, Y., Pan, Y., Grueneberger, F. J., Jerzak, Z., & Fetzer, C. (2013). Elastic Complex Event

Processing under Varying Query Load. Paper presented at the BD3@ VLDB.

Hu, J., Gu, J., Sun, G., & Zhao, T. (2010). A scheduling strategy on load balancing of virtual machine

resources in cloud computing environment. Paper presented at the Parallel Architectures,

Algorithms and Programming (PAAP), 2010 Third International Symposium on.

Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., & Niaz, I. A. (2017). A hybrid genetic

wind driven heuristic optimization algorithm for demand side management in smart grid.

Energies, 10(3), 319.

Ji, H., Bao, W., & Zhu, X. (2017). Adaptive workflow scheduling for diverse objectives in cloud

environments. Transactions on Emerging Telecommunications Technologies, 28(2), e2941.

www.manaraa.com

48

Katyal, M., & Mishra, A. (2014). A comparative study of load balancing algorithms in cloud computing

environment. arXiv preprint arXiv:1403.6918.

Khajemohammadi, H., Fanian, A., & Gulliver, T. A. (2013). Fast workflow scheduling for grid computing

based on a multi-objective genetic algorithm. Paper presented at the Communications,

Computers and Signal Processing (PACRIM), 2013 IEEE Pacific Rim Conference on.

Kroeger, T. M., & Long, D. D. (1999). The case for efficient file access pattern modeling. Paper presented

at the Hot Topics in Operating Systems, 1999. Proceedings of the Seventh Workshop on.

Kumar, P., & Verma, A. (2012). Independent task scheduling in cloud computing by improved genetic

algorithm. International Journal of Advanced Research in Computer Science and Software

Engineering, 2(5).

Kumaresh, V., Prasidh, S., Arjunan, B., Subbhaash, S., & Sandhya, M. (2012). Multilevel Queue-Based

Scheduling for Heterogeneous Grid Environment. International Journal of Computer Science

Issues (IJCSI), 9(6), 245.

LIU, G., & YANG, C. (2013). SCHEDULING RESEARCH BASED ON GENETIC ALGORITHM AND QOS

CONSTRAINTS OF CLOUD COMPUTING RESOURCES. Journal of Theoretical & Applied Information

Technology, 51(1).

Mell, P., & Grance, T. (2010). The NIST definition of cloud computing. Communications of the ACM,

53(6), 50.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

Miao, J. (2016). AN ATTRIBUTE-ORIENTED TASK SCHEDULING STRATEGY FOR IMPROVEMENT OF

QUALITY OF SERVICE IN CLOUD COMPUTING.

Mohammed, I. (2016). Task scheduling using best-level-job-first on private cloud computing. M. Sc.

thesis, Middle East University, 2016.(doi not available).

Naseem, M., Al-Rahmawy, M. F., & Rashad, M. Z. (2015). A Scheduling Algorithm to Enhance the

Performance and the Cost of Cloud Services. Computer Engineering and Intelligent Systems, 6(8).

ROUHI, S., & NEJAD, E. B. (2015). CSO-GA: a new scheduling technique for cloud computing systems

based on cat swarm optimization and genetic algorithm. Cumhuriyet Science Journal, 36(4),

1672-1685.

www.manaraa.com

49

Ru, J., & Keung, J. (2013). An empirical investigation on the simulation of priority and shortest-job-first

scheduling for cloud-based software systems. Paper presented at the Software Engineering

Conference (ASWEC), 2013 22nd Australian.

Saini, S., & Kaur, S. (2017). Cloud Computing-An Emerging Technology and Review of Hybrid Models.

International Journal of Engineering and Management Research (IJEMR), 7(3), 82-85.

Saxena, D., Chauhan, R., & Kait, R. (2016). Dynamic fair priority optimization task scheduling algorithm in

cloud computing: concepts and implementations. International Journal of Computer Network

and Information Security, 8(2), 41.

Selvarani, S., & Sadhasivam, G. S. (2010). Improved cost-based algorithm for task scheduling in cloud

computing. Paper presented at the Computational intelligence and computing research (iccic),

2010 ieee international conference on.

Sotomayor, B., Montero, R. S., Llorente, I. M., & Foster, I. (2009). Virtual infrastructure management in

private and hybrid clouds. Internet computing, IEEE, 13(5), 14-22.

Topcuoglu, H., Hariri, S., & Wu, M.-Y. (1999). Task scheduling algorithms for heterogeneous processors.

Paper presented at the Heterogeneous Computing Workshop, 1999.(HCW'99) Proceedings.

Eighth.

Wyld, D. C. (2009). Moving to the cloud: An introduction to cloud computing in government: IBM Center

for the Business of Government.

Xu, H., Yang, B., Qi, W., & Ahene, E. (2016). A multi-objective optimization approach to workflow

scheduling in clouds considering fault recovery. KSII Transactions on Internet and Information

Systems (TIIS), 10(3), 976-995.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges.

Journal of internet services and applications, 1(1), 7-18.

Singh, A. K., Sahu, S., Gautam, K. K., & Tiwari, M. N. (2014). Private cloud scheduling with SJF, bound

waiting, priority and load balancing. International Journal, 4(1).

X. Meng, V. Pappas and Z. Li, “ Improving the scalability of data center networks with traffic-aware

virtual machine placement.,” In INFOCOM, 2010 Proceedings IEEE, pp. 1-9, 2010.

Guang Liu, Chen Yang and Daoguoli. "Scheduling research based on genetic algorithm and Qos

constraints of Cloud Computing". Journal of Theoretical and Applied Information Technology,

10th May 2013. Vol. 51 No.1, pp. 92–95.

www.manaraa.com

50

S. Kaisler, W. H. Money, and S. J. Cohen, “A decision framework for cloud computing,” Proceeding IEEE

45th Hawaii Int. Conf. Syst. Sci. A, pp. 1553–1562, 2012.

Zhu, X., He, C., Li, K., & Qin, X. (2012). Adaptive energy-efficient scheduling for real-time tasks on DVS-

enabled heterogeneous clusters. Journal of parallel and distributed computing, 72(6), 751-763.

Ababneh, I., & Bani-Mohammad, S. (2011). A new window-based job scheduling scheme for 2D mesh

multicomputers. Simulation Modelling Practice and Theory, 19(1), 482-493.

Babbar, D., & Krueger, P. (1994, August). On-line hard real-time scheduling of parallel tasks on

partitionable multiprocessors. In 1994 Internatonal Conference on Parallel Processing Vol. 2 (Vol.

2, pp. 29-38). IEEE.

Wu, Z., Ni, Z., Gu, L., & Liu, X. (2010, December). A revised discrete particle swarm optimization for cloud

workflow scheduling. In 2010 International Conference on Computational Intelligence and

Security (pp. 184-188). IEEE.

Buyya, R., Broberg, J., & Goscinski, A. M. (Eds.). (2010). Cloud computing: Principles and paradigms (Vol.

87). John Wiley & Sons.

Ahmed, A., & Sabyasachi, A. S. (2014, February). Cloud computing simulators: A detailed survey and

future direction. In 2014 IEEE International Advance Computing Conference (IACC) (pp. 866-

872). IEEE.

